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THE PROBABILITY OF MULTIPLE CORRECT PACKET RECEPTIONS
IN A MULTIRECEIVER FREQUENCY-HOPPED
SPREAD-SPECTRUM SYSTEM

1. INTRODUCTION AND PROBLEM FORMULATION

An important quantity in spread-spectrum radio networks is the probability that
exactly ! out of m packet transmissions are successful, given that k users attempt to
transmit their packets simultaneously; this quantity is denoted by P({,m — l|k). This
quantity is essential for the integration of the first three layers (physical, data link, and
network layer) of the ISO network model for packet radio networks 1sing spread-spectrum
signaling and forward-error-control and, as such, it enables the design and performance
evaluation of multiple-access protocols for such networks.

The integer m in P(l,m — I|k) denotes the number of receivers of interest: in most
practical situations, m < k. Specifically, in problems involving multireception with a bank

of m receivers at a single locaiion, tlie probability mass function (pmf)
P(l,m—Ik) for { =0,1,---,m and m<#k

describes the multireceiver performance. Moreover, in problems in which the evaluation

of the throughput or delay of various packet radio network protocols is desirable,

k

P.(llk) = Pp(l,k = ljk) = <1

)P(l,k—”k) for 1=0,1,---.k
is required, where P.(l{k) denotes the probability of any ! correct packet receptions out of
k simultaneous transmissions (see [1},{2]).

Consequently, in practical spread-spectrum packet radio networks. there is an undis-

m

puted need to c¢valniate the probabilities P(I,m —l|k) and Pr(l,m —1llk) = ( | ) P(l,m -

l|k) (1 =0,1,---.m and m < k) for different spreading signaling formats. data modulaticn
schemes, and error-control coding schemes.

In this report, we evaluate these quantities for frequency-hopped (FH) spread-spectrum
multiple-access (SSMA) networks. Specifically, we develop an exact expression for P(I,m—

-
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l|k) and an approximation based or Gaussian multivariate densities. The exact expres-
sion is difficult to compute and its computational complexity grows exponentially with
m. By contrast, the Gaussian approximation is computationally efficient and its com-
plexity grows linearly with m. Numerical results obtained from these two mectlhods are
compared with those obtained via the independence assumption method commonly
used in the literature [1],[2]. This method assumes that packet errors among different
receivers are mutually independent, which greatly simplifies the computation. We further
establish that the independence assumption can be trusted in most cases and derive the
range of parameters in which each of the two approximations (Gaussian and independence)
is preferable.

Derivations and comparisons are carried out for FH/SS systems employing MFSK
modulation with noncoherent demodulation and Reed-Solomon (RS) (n, k) forward error-
contro] coding with erasures-only, errors-only, and errors /erasures minimum-distance [3]
decoding. It is assumed that each RS symbol carries one M-ary symbol (i.e.. n = M), that
each FH dwell time (hop) carries one RS symbol, and that one RS codeword per packet is
transmitted. The frequency-hopping patterns of the different users are modeled as random
memoryless hopping patterns [4]. Thus, each of ¢ available frequencies are visited with
equal probability and independently of each other during any dwell time (hop) by each user
and mutually independent hopping patterns are assigned to distinct users. The various
users are packet-synchronous but may be hop-asynchronous; in this context, both hop-
synchronous and hop-asynchronous FH/SSMA systems are considered. Also thermal noise
modeled as additive white Gaussian noise (AWGN) is incorporated in the analysis.

This report is organized as follows: In Section 2 exact expressions for P(l,m — l|k)
are derived for all cases of interest enumerated above. In Section 3, the corresponding
expressions based on the Gaussian approximation technique are derived. In Section 4.
the approximation based on the independence assumption is cited. Numerical results and
comparisons of the three approaches are presented provided in Section 5. In Section 6.

couclusions are drawr.
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2. DERIVATION OF EXACT MULTIRECEPTION PROBABILITIES

We are interested in finding an exact expression for the probability P(I,m ~ l|k) of
l receivers receiving correctly and m — | ones receiving erroneously, for a specific set of
receivers. It assumed that all users employ similar MFSK modulation (with M frequency
tones) with noncoherent demodulation and identical extended RS (n, k.) codes with code-
word length n symbols (n = M) and %, information symbols per codeword. (Refer to the
additional assumptions in the previous section.) Due to the symmetry in the system, we
can equivalently find the probability of the first | receivers decoding correctly, while the
remaining m — [ receivers decode in error. In the sequel, we implicitly assume that m > 2.
For m = 1, the model reduces to the single receiver model analyzed in [4].

For FH/SSMA communications, the probability of a coded symbol error is upper-
bounded by the probability of a hit, which is a function of the available frequency slots ¢
and the number of contending users k, where k > 1. Subsequently, we denote by Pi(q, k)
the probability of a hit. Recall from [4] that for hop-synchronous FH/SSMA systems

Py(g,k) =1 (1~1/g)*"! (2.1a)
and for hop-asynchronous systems
Py(g,k)=1-(1-2/g)*". (2.1b)

It is assumed that £ > m > 2 and ¢ > m > 2 so that the above quantities are guaranteed to
be nonnegative. For asynchronous systems the above upper bound is valid for any number
of symbols per hop (dwell-time) equal or larger than 1 (slow frequency-hopping).
2.1. Errors-Only or Erasures-Only RS Decoding

The ith receiver receives correctly the transmitted packet, if the number of hits h(z),
for 1 <1 < m, satisfies

0 < h(z) <t,

where t denotes the correction capability of the (n,k.) block code (k. is the number of
information symbols and n the total number of symbols per codeword) For pure error-

correctiois,

dmin ~1 n-— kc
— |Gmin = 1) _ 2.9
t = [ } 5 (2.2a)




while, for erasure correction,

t=dmnin—1=n-—k.. (2.2b)

In the synchronous case, each receiver output depends only on other receivers out-
puts during the same dwell time. This applies also to the asynchronous case, if proper
interleaving takes place. Then the total system operation becomes memoryless.

As amplified in Appendix A,

P(l,m — l|k) =

= PO<h1)<t,...,0<h()<t,t+1<h(l+1)<n,...,t +1 < h(m)<n)

£E.T 2 () () (A

&L & lom _ 3 Eam _y €am_y

2™ 1

n— Z €nn
. Plh . P;z o P:f'a‘m—_ll . (PO) nn=1 (2.3)

where P,, = P(E,,) denotes the probability of the event E,,, under which the m de-
modulator outputs during a particular symbol of the codeword (packet) correspond to the
binary reprcsentation of nn (recall 0 and 1 denote correct and incorrect reception, respec-
tively), and €, is the number of times the event E,, occurs in one codeword. Of course,
any other correspondence of the above events and the natural numbers would work as well.
Note that in (2.3), all events having same weight have equal probabilities. although this
does not simplify the expression.

The range of £,,, for the sums in (2.3) is to be obtained from a Diofantine analysis of

the inequalities:

2™ -1
0< Y ad bpn <t , i = 1,21 (2.4a)
nn=]
and
2m -1 _
t+1< Y alfl lan . i = 141,0142,..m (2.4b)
n.=1




where abs = 1or 0, according to whether the ith component of tiic vector event E,, is
1 or 0, that is, it takes part in the ith receiver error count or not. We have to add another
constraint to the m constraints posed by (2.4a,2.4b), namely that

27—}
0< > lan<n . (2.4¢)
nn=1
The purpose of this constraint is to ensure that we do not surpass the codeword length n

by permitting higher values of the ¢,,s.

It remains to find expressions for all P(E,,), for nn = 1,2,.-.,2™. This is equivalent
to finding the probability of having p demodulator outputs correct and m — p ones in
error during a particular transmitted symbol (of identical order for all receivers), for p =
0,1,---,m. These probabilities should be a function of p,m,k, and q. We denote them
by P,(p,m,q,k). First we find P(Ey) = P.... = Py(m,0,q,k), that is. the probability of
deccding correctly all the simultaneous symbols in all receivers ; recall Ey corresponds to

the vector event (0,0,---,0). Because of the symmetry we get

P..... = Plcle.... ¢)-P.... ¢
~—— S~ S~

m m-1 m-1

= P(clc...c)- P(clc\.\./._/c) ... P(c|cc) - P(cle) - P(c)

~—~—
m-—1 m-—2
= [[1-Pulg-j+1,k~j+1). (2.5)

j=1

In the above and in subsequent expressions the following notation is used: P(c|c... c) or
:
P(elc...c),t =1,2,..,m — 1, denote the conditional probabilities of a particular symbol
i
of a single receiver being correct or incorrect given that symbols of the same order of :
other receivers are correct; similarly P(e_... e|c ... ¢) denotes the conditional probability
o
] 1
of a particular symbol of j receivers being incorrect given that symbols of the same order

of 1 other receivers are correct; and P(c.... c) or P(e_... €) denote the the unconditional
— ——

1 1




{absolute) probabilities of a particular symbol of : receivers being correct or incorrect,

respectively. We now find P(Eam_1) = Pee.... = P.(0,m,q, k). We have

P, . ... = P(ele_..e)P. .
N~ v ~f

m m-1 m-1

-

= |1=Pcle....e)| - Pe ... ¢

L m-—1 m-—1

= P.... . — P(c)- P(e. elc)
~——

m-—1 m— l
= Py(0,m,q,n) = Py(0,m —1,¢,k) ~[1 = Pa(g,k)]- P,(0,m~-1,¢g-1.k-1) (2.6)

In these expressions Equation (2.6) is a recursive formula for finding P,(0,m.g, k). The

solution of this equation, as shown in Appendix A, is

Py(0,m,q.k) = 1 + Y (-1)‘('?)H[l—P,,(q—j+1,k—j+1)] (2.7)
1=1

j=1
Proceeding one step further we obtain the more general expression
P(Enn) = Ps(pym —p,q,k)
= P,

. € C ... C
N’ N’
mep »

= P,(O,m - P9 —P,k— p)-P,(p,O,q,k)

p
= JIi-Palg—i+1,k—j+1)]

1=1
m-p
1+Z(—1)‘(m p>H[1_Ph g-p—Jj+lLk—p-j5+1]j.
1=1 1=1
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(2.8)

The equality P(eweicvc) = P,(0,m — p,q— p,k — p) is obtained by observing that
m—p P

conditioning on a particular symbol of p receivers being correct is equivalent to reducing
the number of available frequencies for hopping ¢ and the number of users k by p. The last
equality in (2.8) is then obtained through substitution from (2.5) and (2.7). Equations (2.3)
and (2.8), together with the constraints posed by (2.4a), (2.4b), (2.4c), give the solution to
our problem. As it becomes clear from (2.3), the exact evaluation of P(l,m — l{k) requires
the computation of 2™ — 1 dependent sums, in which the limits should be found through a
Diofantine analysis of (2.4a),(2.4b), and (2.4c). In addition, the summands are powers of
P(E,,), which can be computed through (2.8). Due to those computational requirements,
exact expressions are nearly impossible to evaluate, for m > 4. However. as the next
sections indicate, useful approximations have been developed with satisfactory accuracy in
different ranges of the various system parameters of interest.
2.2. Inclusion ¢of AWGN and Errors-Only or Erasures-Only RS Decoding

The expression in (2.3) remains valid in its general form; however, the expressions for
P, .. c...cchangein order to take the effects of AWGN into account. Let us find first

N
» v

P. ... .. For that we get
~

v

PC-..C=(;-PN)U'Pc(h.)..c (2.9)
=~ ~—~—

4 v

where Pc(h,),,  denotes the previously evaluated P. ... . in (2.5) by counting errors (or
—— .~

erasures) from hits only, and Py is the symbol error probability of the MFSK due to

AWGN. To find P, .. . we write
o

"

P, . e = Plele....€)-Pe ... .

~—~ ~—~ ~—~
M n=1 a1
= Ptv — P(c)- P(evelc)

-]




= Pe(pt g, k) = Pe(p—1,q,k) = (1= Pyl = Pa(g. k)] Pe(pt = 1,¢ — 1,k — 1). (2.10)

The recursive equation (2.10) is similar to (2.6) and thus has as solution the expression

n 1
Pe(ug.k) = 1+ Y (—~1)'(‘;)H{(l—Pm[l—Ph(q—j+1‘k—j+1>]} (211)

=1

From that we obtain easily the more general result

P(Enn) =P cc...c = P(/l.V) = P(G
T N~ S

B v M v v

= Pe(ﬂuq_l/‘k‘l/‘Pv...c
N

v

v

= (1=Py)" - JI0 - Putg =+ Lk = +1)]

)=1

m 1
+ Z(*l)’( )H (1-PN)[1=Pulg-v~j+1k-v—j+1)]}
1=1 ]

(2.12)
which gives the desired expression. For our problem, y + v = m.
The probability Py of MFSK symbol errors due tc AWGN given by
M1 M -1 (_1)m+1 m i goME
Py = ~—— WFTT R 2.13
N mzz:l ( m ) m+1 ‘ ( )

where E, /Ny is the information symbol signal-to-noise ratio and r is the code rate of the
system (r = k./n).
2.3. Errors and Erasures RS Decoding

In this section, we analyze the case in which all receivers employ combined errors and
erasures decoding. Thus during the minimum distance RS decoding correction of both
errors and erasures is atterrpted. We assume *hat erasures happen whenever a hit from

other users occurs and they are detected: errors are caused by AWGN only.

8




It 1s well-known that any RS code can decode correctly any received word having s

erasures, t errors if these numbers satisfy
2t + s<dpn—-1 = n—k. (2.14)

We start the analysis for this case by noting that the basic “simultancous™ events in the
multi-receiver are now defined by ¢ = (z1,...,zm). ~iere z,, 1 = 1,..., m, can take
values ¢, ¢, s corresponding to correct, error, or erasure symbol, respectively. Again,
because of symmetry, the probability of finding in a particular symbol (or dwell-time)
some receivers in error, some in correct receptic.i, and some in erasure is independent of
the particular order of the receivers.

For a given symbol we define

Pr( n, recetvers in error, ny recelvers in erasure, n. receivers correct )

= Pe es...s ¢ c = P(nesns»nc) (215)
O~ N
where, of course,
Ne + ng + ne = m. (2.16)

To find P(!,m — l|k) we notice that the basic difference from the treatment in Section 2.1,
1s that now we have three different states in every symbol. So, instead of having 2™ — 1
sums, we have 3™ — 1 sums. If, we define as E,, the event according to which the m
demodulator outputs during the same symbol correspond to the ternary representation of
nn, where 0 denotes correct reception, 1 denotes an erasure, and 2 denotes an error. and
set €,, to denote the number of times the event E,, occirs in one codeword, then we can

write

x(@)(a)- ( [;‘?_‘1[""

am_

P,m - 1l|k) = Z Z

lam _, €am _

n— Z lnn

PP PRI (Py) e




(2.17)
The range of values of ¢;, ¢;, - -+, £3m_; can be found from the m inequalities:
0< Za") bon Sn—ke for 1=1,2,-- .1 (2.18q)
nn=1
and
3m -1
n—ke + 1< > al) fop for i=141142,---,m (2.18b)
nn=]

where a'a takes values € {0.1,2}, depending on what type of event (correct symbol.

erasure, or error) is implied for receiver : € {1,...,m} from the i-th component of the

(J)

ternary representation of nn (identifying the event E,,); that i1s, ann = 0 for correct

reception, a\l) = 1 for erasures, and a'?) = 2 for errors. To the above inequalities we must

add the condition

0< Y Lpn<n (2.18¢)

which ensures that the total number of symbols remains smaller than n, the codeword (or
packet) length.

In order to evaluate P(l.m — l|k). we need to calculate expressions of the form
P, €s ... sc ... c, where n, +n, +n. =m. We can write

C .

ne n, ne

- O N —_— N N~ I~
where
Pic...c) = H{(1~P,~){l - Pg-j+1.k-7+1)} (2.20a)
n. J=1
Ple ... elc...c) = H{PN[I—Ph(q—nc—j+1.k—n(—j+1)]} (2.20b)
n, ne )=

10




so that

P(Enn) = P . . es...5¢...¢c = P(ne»nunc)
N N

e n, Nc

= JJ{Q =Pyt = Pa(g—j + 1,k —j + )]}

j=1

- JIPN = Py -ne—j+ Lk —n. - j+ 1))

J=1

n, (n, 1 . ‘
1 + Z(—l)l(i>H[1—Ph(q—ne—nc ~]+1,k—‘ne"nc'—]+1)]
1=1

=1

2.4. Asynchronous FH/SSMA Case

It is straightforward to extend the results of the hop-synchronous case to the hop-
asynchronous one, if we assume that all symbols within each codeword are interleaved. In
the asynchronous case, in addition to the full hits that strike a particular user. we have
partial ones, as well; this increases the probability of a hit to P, = 1—(1—2/¢)*"1. as
stated at the beginning of this section. Substituting this for Py in the above expressions

we obtain the desired expressions for the multireception probabilities P(I,m — I|k).

3. A NEW APPROXIMATION FOR P(l,m — ljk)

In the previous section, we derived exact expressions for the probabilities P(I.m —
Ilk) (1 = 0,1,---,m, m < k). Here we develop an approximation method based on the
Gaussian multivariate distribution. First we present a general approximation technique for

P(l,m — l|k) for systems with general interference covariance matrices. Then we exploit

11




the specific form of the covariance matrix of the interference for the symmetric FH/SSMA
problem to obtain a closed form expression. Finally, we derive the necessary covariance
matrices for the various cases of interest.
3.1 Gaussian Approximation

The computation of P(I,m — l|k) is essentially a combinatoric problem, which in-
volves keeping track of the bit erasures or errors and declares an error when the count
for a particular user exceeds the correcting capability of the code. This is essentially the
multi-dimensional extension of the binomial counting experiment, which, however, results
in excessive computational complexity, as shown in the previous section. Here we we ap-
proximate the required “rmulti-nomial” probability distribution with a multidimensional
Gaussian.

Let us define the random variables z¢; (1 < £ < n,), where n is the number of bits per

packet for the :th among m users of interest (m < k) so that

ze¢i = 1,1f the £th bit (or symbol) of user 1 is incorrect (due to an erasure or an
error, depending on the decoding which occurs with known probability p)

z¢i = 0, if the €th bit of user 7 is correct with probability (1 — p).

The actual calculation of p presents no difficulty and will be carried out in Section 3.3 for

the various case of interest. Now define for user ¢ (1 < < m) the RV z, such that

T; is the number of bit errors or erasures that sender 7 suffers among his n bits within the
packet (slot). Thus, 0 < z; < n. z¢; is independent of ry; when £ # €', because of the
random FH patterns assumed. Consequently, z; is the sum of n i.i.d. random variables
and this tends towards a Gaussian distribution for large n [mean np, variance np(1 — p)].

If we consider any linear combination of the r,s, say




then

tyf

It
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It turns out that the z¢s are either independent of each other or one-dependent (i.e., z¢—1,
z¢, ze4; are dependent but z, is independent of z¢49,z¢—2,Z¢43,2¢-3, - -). Independence
arises if the system is hop synchronous and one-dependence when relative hop offsets are
permitted, as in the hop-asynchronous systems (see Section 3.3.2). In either case, T 1s a
sum of i.i.d. or one-dependent RVs and, as n — oo, tends to have a Gaussian distribution.

Consequently, all z;s are jointly Gaussian if the codeword length n is sufficiently large.

Define the m-dimensional column vectors

Ty RO
Iy np

x = ) and g = . (3.0)
L Ty J an_

Then we have the multivariate Gaussian probability density function (pdf)

1 o~z -1 (z-p) (3.1)

where ¥ is the m x m covariance matrix with diagonal elements
a = E{(zi —~n)*} (3.2)

and off diagonal elements (all of which are equal due to the symmetry of our problem)

b= E{(z: - np)(z, - np)} (3.3)

- E { LZ::I(I::‘ -P)} [g(“j —p)} }

13




a and b are calculated in Section 3.3 on tne basis of the signaling scheme (FH hop-
synchronous or hop-asynchronous) or on the basis of the decoding scheme and the presence

of AWGN. We know that, for user ¢ to be successful,
0<z;<e

where e is the erasure or error correcting capability of the RS code (¢ = n — k. or e =

(n — k¢)/2, respectively, for RS).

If user ¢ is unsuccessful,

e<z; <n

Pg(l,m = k) = Ae...A /H.../:] pz(z)dzy ... dzk. (3.4)

In the above equation, there are ! integrals of the form foe and m — [ integrals of the form

fe':H . We define

Hence,

F 0 1
T 8 }I
21 T le+1
. }m—l
LC';'l..
B
]
e J
I, = Z
}m-—l
L 7 ]

and have

L2 1
—_—
, V(2m)m|Z|

This integral can be simplified, if the exponent is converted from a quadratic to a sum-of-

Pg(l,m —1/k) = —4z-p) " E-1-p) gy (3.5)

squares form. This can be materialized through a linear transformation that diagonalizes

14




-1 Now X takes the form

Therefore,

zmd, consv:quently,

z

or, equivalently,

where u7 = VB[11 .

so that, if we define

fa b b b'}
b a :
il LR
: a
Lb b Q) mxm
b b
a-b 0 b
+
a_'b-me b
1
1
= (a—-bI + bl (1 1 1 .. )ixm
1 mxl
E=A+ggT

.. 1}ixm and A = (a — b)I. Moreover,

R (A w)TA™)

14+ vT4 'y
__1 uu’?
~ (a-b) (a —b)a+ (m —1)b)
. 1
a= a—b
b= 5

(a —b)la+ (m—~1)b

15

b]

b

mxm



then

- Ol O Ol
e Ol
o

<o

b

mxm

One way to diagonalize £7! is to find its eigenvalues and the corresponding eigenvec-
tors and then create a transformation matrix with the eigenvectors as its columns. The

eigenvalues of £~! are given by the equation

det(A I —T7Y) = 0.

But
b b b
. ]
AT=-S'= (A=a) + |:
K )
= (A-a)l + B
where B is of rank 1, and
1
—_ -1 — - a m ————
det(AI-Z7 )= (A-—a) det(1+(/\_a)B)
= (A —a) {1+trace(()‘-a))}
_may e
= -9 > -a)
= (A—a)™ (A= (a-mb)).
Hence
A = X = = Apol =a = Ag (3.9)
and
Am = d—mi) = Ap (3.10)




where

1
Aa = a-b
and
1
NS oD
Finally, notice that
det(T) = (a — b)"a+ (m — 1)} (3.11)

3.2 The Integral Transform Method
Consider the exponent of the integrand in (3.5). After a shift of variables to account

for the mean, it can be simplified to

2
lT\'*—l — 1 - 2 b - :
e = L= T35y 27 - et (m—1) 2o

Jj=1 =1

Using u; = 7256 makes the exponent

1=1 =1

m m 2
1 9 b
) D4 - a+(m—1)b(zu’) } '
The cross product terms come from the factor

£)

But the square in the above equation can be eliminated with the help of the following

integral transform (see [5)):

chote?t _ 1 /+°°d eéye--,“;r (3.12)
= _Q_Tra_z o y i 4
with
b
2 e — 3.13
a+{m-—1) ( )
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and

m

o = Z‘uj. (3.14)

=1
After some manipulations in which we use (3.11)-(3.14), we obtain the basic result

1,,2
e” 1Y

Nor (@(21) = ®(22)])" - [1 ~ (z1) + B(z2)]™ (3.15)

+ oo
PG(I,m-I|k)=/ dy

where

€ ~np—y\/l;
= EZTRCUVD 3.16
Y (3:16)

~np — yv/b
a—-1b

-~

5 = (3.16b)

$(r) = \/—1= e~ 24y

2r J.

and e —np is the erasure (or error) correcting capability of the block code employed, shifted
by the mean np. Eq. (3.15) gives a method for calculating Pg(l,m — Il|k) with linear
computational complexity in m. Note that, for the case b < 0 (b being the off-diagonal
elements of the covariance matrix), (3.15) involves ® evaluated at complex arguments.
This is perfectly legitimate and results in an additional small computational effort. In this
case, the real part of the entity [®(z;) ~ ®(22)]" - [1 — ®(2;1) + ®(z2)]™ ' is involved in the
integral of (3.15).

3.3. Derivation of Received Code Vector Means and Covariances

The method developed in Sections 3.1 and 3.2 for approximating the probability
P(l,m — l|k) requires only knowledge of the three quantities np, a, and b. These quantities
are the mean of the received code vector z and the diagonal and off-diagonal terms of
its covariance matrix L [see (3.0)-(3.3)]. Here we evaluate these quantities for FH sig-
naling and the various types of system conditions (hop-synchronous or hop-asynchronous,
presence of AWGN) and decoding schemes (erasures-only, errors-only, and errors/erasures

decoding) of RS codes.
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Each transmitter sends data in packets with n RS symbols per packet. For the jth
symbol of the ith user, the RV z;; takes value 1, if that symbol is either erased or in error,
and 0 otherwise. The probability of z;; being 1 is p (to be evaluated separately later for
the two cases). The expression r; = Z?: 1 Zj;i counts the number of errors or erasures per
packet and has mean np; we also need a, as defined in (3.2) and b as defined in (3.3).

Each transmitter hops randomly between ¢ available frequencies with one M-ary sym-
bol transmitted per frequency hop. A “hit” takes place when the frequency at which a
particular user chooses to transmit is also used by one or more other users during a dwell
time. The occurrence of this event can be detected by listening to the channel and con-
ducting a threshold test; then a symbol erasure is declared. Between different users, the
duration of a hop (or dwell time) may be assumed perfectly synchronized, or more real-
istically, as involving relative delays. Noise (AWGN) may also be present in general, but
this is dealt with a little later.

We first evaluate the desired quantities for the noiseless hop-synchronous case in Sec-
tion 3.3.1, then for the noiseless hop-synchronous case in Section 3.3.2; for these cases
errors-only and erasures-only decoding are treated together; finally, we incorporate the
effects of AWGN and treat errors/erasures decoding in Section 3.3.3.

3.3.1 Noiseless Hop-Synchronous FH/SSMA

Since we only have multiple access interference, the decoding employed is erasures

only; however the results are also applicable to errors-only decoding after a trivial change

in the parameter ¢. The probability of a hit is

k-1
p=1- (1 - l) (3.17)

and

a = E{(zi —np)*} = np(1 -p) (3.18)

b= E{(z; — np)(z; — np)}

= E { L};(ru - p)} [g(ru - P)} }
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= (E{.’I)(,‘ :I‘gj} - p2).
=1
But

E{zgize;} = Prize = 1, 2¢j = 1}

= Pr{Al, 2¢si = 1, z¢; = 1} + pr{af

gy T = 1,z = 1}

where Afj is the event that users : and j hop to the same frequency during the £th hop.

Therefore,

k=3
E{zrpzei}=1- Pr{Afj} + [Z Pr{ m users hit 1, user j gets hit leJ}J ~Pr{Xf]«}
k-3

B ) 62
(D E- )T - ) AT -5

(3.19)

and

b = n E{ze 24} — np’. (3.20)

3.3.2 Noiseless Hop-Asynchronous FH/SSMA Channel
In Section 3.3.1, it was assumed that hops between users were perfectly synchronized.
i.e., that there was no overlap between the Ith hop of user : and the (/ 4+ 1)th hop of
user j, for any 2z, j. This assumption is not realistic, since we assume that the system is
distributed and not centrally controlled. It is time now to relax that assumption.
Assume that each hop is of total duration 7. Let us set a reference point for the
beginning of each hop. Then we assume that the the displacement in time of the beginning

of the hop of any user is an RV uniformly distributed between —7/2 and +7T/2.
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First we note that p, the probability that any user is hit while in the Ith hop, changes

k-1
p = 1—<1—§) . (3.21)

as follows:

Note that z;; is independent of z,,,, for I # m, due to the random assumption for the
hopping pattern. However, because of chip overlap. z;; is not independent of z,,;, when

m and [ differ only by 1. Therefore, we have

a = E{(zi —np)*} = np(1-p) (3.22)
b= E{(zi — np)(z; — np)}
= E{ Y (za —p)} [Z(m —p)”
=1 =1
= E{(x1, ~ p)z1, ~ p) + (21, — p)(72, — p)
+ (22: — pNx1; = p) + (72: — p)(T2; — p) + (22: — p)T3; — P)
+ (Tni ~ PN T(no1y; = P) + (Tni — P)(Tn; — P}
which, since E{(zi; — p)(x(14m), —P)} = Oforanyi, jl, m =23, ... reduces to
b = n(pr~p’) + (2n~2)(p2 - p°) (3.23)

where p; = E{r;z1;} and p2 = E{ziiz(141),}-

Next we derive expressions for p; and p;. In the following, whenever we refer to a hit.

we mean on the Ith hops of users 7 and j.

p1 = Pr{iry =1,1,; = 1}
= Pr{z¢ = 1,2, = 1|i, j hit each other on {th hop}
- Pr{i, j hit each other on (th hop}
+ Pr{ z¢i = 1,74, = 1fi, j do not hit each other on ('th hop}
- Pr{i, j do not hit each other on ('th hop}
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The first term equals 1/q. The second term is equal to
(1 - -;—) Pr{zy = 1,24, = 1]i, j do not hit each other}.
We write the la.ter probability as
ZPr{ i hit by G. i not hit by G, jis hit] i,j do not hit each other}
G
= Y Pr{ihit by G| i, jdo not hit each other)
G

- Pr{ j gets hit | i hit by G, i,j do not hit each other}

where G refers to all possible groups of the remaining k — 2 users and all nits pertain to
the fth hop.

Cousider a particular user u from group G and the probability of u hitting j, given
that u hits 7 and 7 and j do not hit each other. We note that there will be two consecutive
hops (dwell times) of u that overlap in time with the Ith hop of i. Out of these two, oue
or both hit i. Therefore, there are two possible situations: (1) both hops of u overlap with
the Ith hop of j with probability 1/2 (given the uniform distribution of the chip delay of
the users) and (2) only one of these two hops overlaps with j with probability 1/2. Note
that one of the above possibilities has to take place, since the Ith hops of 1 and j do overlap
to some extent, under the asyuchronous FH/SS system assumption.

Consider the probability that u hits the {th hop of j, given that (1) above holds. u

hits 2, and ¢ and j do not hit each other. This probability is

1 1

1 —

1
+ = =
g-—1 2 ¢-1 g-1

O —

Also, consider the probability that u hits the Ith hop of j, given that (2) above holds. that

u hits 7, and that 7 and j do not hit each other. This will be

|

+ -1

RO}
-
|
—

1
q




From all the above we surmise that the probability of u hitting the Ith hop of j, given

that u hits the /th hop of : and that : and j do not hit each other on the ith hop, 1s

11+13_ 15 1
2 ¢-1 2 2 g-1 4 ¢g-1

Finally,
Pr{z; = 1,1;; = 1} 1 j do not hit each other}

S ()T ) ()]

=1

1

g

1

and thus

We now derive p; = E{x;z(;4+1);}. Here, when talking of a hit. we refer to the Ith

hop of ¢ and to the (I + 1)th hop of j. We have

pe = Pr{zi, =1 1(41), = 1}

= Pr{zry = l.244)), = 11, j overlap in time} Pr{ i, overlap in time}

+ Pr{zi = l.2141), = 1| 1, j do not overlap in time} Pr{ i. j do not overlap in time}
In the above equation,

Pr{i,joverlap in time} = Pr{ i, j do not overlap in time} = 1/2

and
Pr{zi = 1,r041), = 11, ) do not overlap i time} = Pr{z;, = 1} Pri{zg4yy, =1} = p?
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Moreove:

Pr{zi; =1,z(41); = 1|1, j overlap in time}
= Pr{z; = 1, 20441, = 1} 1, j, overlap, hit each other on £ + 1th hop}
- Pr{ i,] hit each other on { + 1th hopl|i, j overlap}
+ Pr{zii = 1,z(441); = 1] i, j overlap, do not hit each other on ¢ + 1th hop}
- Pr{ i, j do not hit each other on € + 1th hopli, j overlap}

From this point on. the evaluation of the quantities of interest proceeds in a similar way

to that for p; and thus it will be omitted. It turns out that
az = Pr{z;, = l.rg4y), =11, joverlap, do not hit each other} = aj (3.26)

where a; is given by (3.24), so that the final result is

~ [3 + (1 - 1) 02] + lpz' (3.27)
q q 2

The desired quantity b is now obtained from (3.24)-(3.25) and (3.26)-(3.27) upon
substitution in (3.23).

3.3.3 Inclusion of AWGN at Front End of Each Receiver

p2 =

1] =

So far, we have assumed that our channel is noiseless and that we can employ erasures-
only decoding, sinrre symbol erasures can be detected. If we incorporate noise. the possi-
bility of a symbol error exists. Symbol error can only take place, if there is no erasure due
to multiple-access interference or to hits. Now we shall employ errors/erasures decoding.
We maintain for user = the RV z;; which is set to 1, if the Ith bit is an erasure. and the

wy;, which is set to 1, if it is in error. Define z); = z;; + 2wy;. Let

n
I, = Sl:]IIl

We know that. for user ¢ to be successful.

0<r, <n-k.




Using arguments similar to those of the noiseless case, we can prove once again that the z;s
are jointly Gaussian, each being the sum of one-dependent variables. We need, therefore,

to find E{z;}; fo1 this we need E{w} and the probability of M-ary symbol error DN,

which is
M-1 M =1\ (=1)™+! m rlogaME
= = —_— T W1 0 2
PN = pn(M) mE=1 ( m ) o e ™+ N (3.28)

where r is the code rate and E;/Nj the signal-to-noise ratio. Then
E{z;} = T E{21i} +2 E{wy)
=n-[p + 2:-py-(1-p)
=np' (3.29a)

where
P =p+(1-ppn (3.29b)

and p is given by (3.21) or (3.17) for hop-asynchronous or hop-synchronous FH/SSMA
systems, respectively.

Note that the probability of an erasure E{z;;} does not change with the presence of
noise.

Further we need to calculate a’ which is

a' = E{.’L‘,‘Q} - E{.’L‘,’}’z

i

n- [E{(Zli + 2wy;)? )} —PIQJ

=n- [E{zz.2 +4 wi’} + 4 E{zjuwy) -p'2}

= n-[p+ 4(1-p)-p~—p'2]- (3.30)
We also need b', which is given by

b = n(p' = p") + (2n—2)(p' ~p7) (3.31)
and for whose computation p,’ and p,' are necessary. The former 1s defined as

pi' = El{zury) = E{zuzy + 4zwi; + dwiun ).
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E{z4;21;} 1s the same with that of the noiseless case, which was dealt with in the previous

section and found to be equal to p;, which is calculated there. Moreover,

E{zuwu} = PT{ZH = lawlj = 1}
= Pr{zi=1,z;=0}-¢
= [PT‘{;’“ = 1} — PT’{ZI;‘ =1,z = 1}] *PN

=(p—p1)PN

where p; is given by (3.25). Finally,

E{uv“w,j} = P7‘{’w1i = 1~u’lj = 1}

= Pr{z;i = 0,2, =0} - p}

(DD -2

Combining all the above we obtain

, 1 2 2 \1*7? ,
pr = prt4p—pilpy +4 (1 ~ E) Kl - E) (1 . 1)] PN- (3.32)

The other quantity of interest, po' = E{z1iz(131),}, is calculated in an identical manner

and is found to be
p2' = E{zizus1); + 42w + 4wiiwas);}
where
E{ziizg41); = p2

E{Zl,'w(‘_,,])j} = PT{ZH = 1,w(l+l)j = 1}
= Pri{zii =1 z041); = 0} -q
= [Pr{:,, =1} - Pr{zin =1 z041), = 1} - pn

= (p~ p2)PN




and

E{w“w(,.,.l)j} = Pr{wli = 1»w(l+l)j = 1}
= Pr{z;; = 0,z(41); = 0} - pi

= Pr{w; = Lw; = 1}

-(-HI0-9 (-2

Combining the above we obtain

) 1 2 2 \1*7?% ,
pz = p2+4p—)pNy +4 (1 - ;) Kl - 5) (1 - &-—_—1)J PN (3.33)

The desired quantity b is now obtained from (3.32)-(3.33) and (3.29) upon substitution in
(3.31). and

The above results are valid for erasures/errors decoding, when information about
the state of the channel (side information) pertaining to hits from other users is available.
If error-only decoding is employed (in the absence of side information), the results are
simplified considerably. In that case, we use the previous definition of z;; to denote the
presence of a error (not an erasure) at the /th hop. Then the necessary quantities p', a',
and b’ are obtained from the quantities p, p;, and p2 of the asynchronous case (no AWGN)

of the previous section as

p'=p+(1-ppn, (3.34)

where p is given by (3.21) or (3.17) and pn is given by (3.28),
a =np'(1-p), (3.35)

and

b = nlp1+ (1= p1)pk ~ P 1+ (2n = 2)[p2 + (1 = p2)p& — ). (3.36)

4. APPROXIMATION BASED ON THE INDEPENDENCE ASSUMPTION
The assumption of independence between the packet errors of the users is commonly

made for simplifying the evaluation of P(l, m —1}k). The relevant expressions are given here
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for reference, because they will be used for computing the numerical results. Let e and t be
the erasure and error correcting capability, respectively, of the block code employed, € the
probability of symbol erasure, p' the probability of symbol error for errors-only decoding,
p the prebability ¢f symbal error for errors and erasures decoding, g( M) the probability of
an M-ary FSK symbol error due to AWGN, and p.(k) the probability of a codeword (or
receiver) error for the typical user. Also, let Pi;q(l,m — l|k) be the probability that exactly
m — [ users suffer packet error, given that k users transmit, and that the probability is

computed using the independence assumption. Then we have

Piuar(lm =1lk) = (’7) Pia(lm — k) (4.1)
and

Pig(l,m ~1[k) = [pe(k)]™ " {1 — pe(k)]". (4.2)
where

i) = Y (7)) -t (4.3)

11=C+]

with e = n — k. for erasures-only decoding;

pelk) = Y (Z) Pt a-p)h (4.4)

I=t+41

where t = (n - k.)/2, for errors-only decoding; and

n n-1, _
pe(k) = Z Z <Tl) (Tl 12 11) ph 612 (1 _p_e)n-lw-b (45)

l
L=0 (y=max{e+1-2{,,0} !

where e = n — k., for errors and erasures decoding For example for asynchronous

FH/SSMA with AWGN the parameters ¢, p’, and p take the values

k-1
e:l-—(]—i—) (4.6)




p' =€+ (1 —¢€)pn (4.7)
and

p=(1-¢)Pn (4.8)

where pp is giver by (2.13).

We can show that, under light traffic conditions (i.e., k/g << 1), the approximation
based on the independence assumption (4.2) is valid for all [, m, and k. To this end it
suffices to show that P(E,,) = P,(p,m — p,k,q) of (2.8) can be approximated by the

corresponding expression, when all receivers operate independently. Indeed, for k << ¢

we have

m-—p 1
Py(p,m = p,q. k) > [1 = Pa(q. K)] |14 ) (-1) (’";") [Ta- Ph(‘]ak))]

1=1 j=1

= (1= Pu(g, b)) - [1~ (1= Palg, B))]™ "
= [ = Palg K)}*Palg, k)™ (49)

5. NUMERICAL RESULTS

In this section we present our numerical results and comparizuns. As explained before,
the exact numerical evaluation of P(l,m — l|k) becomes prohibitive for m > 4 and so only
results for m = 2 and m = 3 can be presented. Indeed, as it is clear from equation (3),
2™ — 1 nested sums are necessary for the computation of P(l,m —{|k) in the case of errors-
only or erasures-only decoding, whereas 3™ — 1 such sums are necessary for the case of
errors/erasures decoding [see (17)]. Since in each sum the number of terms varies between
0and tor t+1 and n, as many as (t +1)2" ~! or even (t+1)*" ! terms may be necessary,
assuming n = 2t. This implies that, for a (32,16) RS extended code and m = 2 receivers.
3 and 8 nested sums =re necessary, respectively, for a total of 173 or 17¢ terms; while for
m = 3, 7 and 26 nested sums are necessary for a maximum of 177 or 17%® terms. The
cor-esponding numbers for m = 4 are 15 and 80 nested sums (i.e., a maximum of 17'* and
17°9 terms), which are prohibitive for most computers.

All results presented in this section pertain to asynchronous FH/SSMA systems em-

ploying RS (32,16) extended codes with 32-ary FSK data modulation and noncoherent
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demodulation. Thus M = n = 32 and k. = 16 for the modulation and code parameters of
interest. The performance of different minimum-distance decoding algorithms is evaluated
including errors-only, erasures-only, and errors/erasures correction decoding. The effect of
AWGN is taken into account in all cases. The number of frequencies available for hopping
1s ¢ and m is the number of FH/SS receivers of interest. In all cases, results based on the ex-
act expressions P(l, m —I|k) and results based on the independence approximation (IROA)
Pr(l,m - lJk), or the Gaussian approximation Pg(l,m —l|k), are presented. Moreover, the
results for the packet (codeword) probabilities P(I,m —I|k) and P;(l,m —l|k) are presented

in different subtables as the number of correct packets I changes (I = m,m - 1,---,1,0).

In Tables 1 and 2 we compare the performance of m = 2 and m = 3 receivers employing
different forms of minimum-distance decoding, in particular errors-only, erasures-only, and
errors/erasures decoding, for different values of the information bit signal-to-noise ratio
E;/Ny. The total number of contending users is k¥ = 10 and the number of frequencies
¢ = 100. The superiority of erasures decoding and errors/erasures decoding over errors-
only decoding is established for the range of values of Ey/Np considered. The limiting
values of the packet probabilities are essentially achieved already for E; /Ny = 10 dB, at
which point all errors are caused by other-user interference. The approximation based on
the IROA appears to be very close to the exact result for most cases. The accuracy of the
IROA appears to be better for P(2,0)k) and P(3,0}k) than it is for P(1,1}k), P(2,1}k) or
P(1,2]k); it 1s also better for errors-only or erasures-only decoding than for errors/erasures
decoding. Finally, accuracy improves, as £y/Ny increases. The exact values of P(I,m —1}k)
are missing from Table 2 because the computation is prohibitive; for m = 3. 26 nested
sums and a maximum of 172 terms are necessary in (17).

Tables 3 and 4 illustrate the performance of m = 2 and m = 3 receivers, respectively,
for FH/SSMA systems employing errors-only decoding, as the total number of users &
and hopping frequencies ¢ vary. The information bit signal-to-noise ratio Ey/N¢ = 10
dB. Comparing the exact results with those obtained under the IROA we observe that
the accuracy of the latter is better for P(2,0[k) and P(3.0{k) than for the rest of the
P(l,m—ljk)s. For fixed ¢, as the number of contending users k increases, the approximation

becomes less accurate. However, for large values of k, both P({,m —{|k) and P;(I,m — I|k)
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become very small. On the other hand, for fixed k, the accuracy improves as ¢ increases.
Overall, the accuracy of the IROA improves as the ratio k/q decreases. This verifies the
analysis of Section 3 under light traffic conditions.

Similarly, Tables 5 and 6 illustrate the performance of m = 2 and m = 3 receivers,
respectively, for FH/SSMA systems employing erasures-only decoding, as the total num-
ber of users k and hopping frequencies ¢ vary. The information bit signal-to-noise ratio
Ey /Ny = 10 dB. Similar observations to the ones made for Tables 3 and 4 are valid here.
Moreover, the results of Tables 5 and 6 are uniformly better than those of Tables 3 and
4, since erasures-correction decoding is considerably more powerful than errors-correction
decoding for for RS codes (RS codes can correct twice as many erasures as errors).

An interesting fact that holds true in the numerical analysis we have performed 1s
that P(m,0]k) is larger than P;(m,0|k) in all cases. In other words, IROA seems to give
“optimistic” results in comparison to the exact analysis.

In Tables 7 to 10 the exact results for P(l,m — l|k) are compared to those obtained
via the Gaussian approximation method described in Section 3, the latter is denoted by
Pg(l,m — l|k). The same system assumptions presented at the beginning of this section
hold. As before the results for the packet (codeword) probabilities P(l,m — l|k) and
Pg(l,m — l}k) are presented in different subtables as the number of correct packets I
changes. There is actually a one-to-one correspondence between Tables 1 and 7 and Tzbles
2 and 8. There are also similarities in the organization of the results between Tables 3
and 9 and Tables 4 and 10. However, in Tables 9 and 10 the number of simultaneous
transmissionc k& changes whereas the number of frequencies is held constant at ¢ = 100
and the results are presented for all three types of decoding considered in this report:
errors-only, errors/erasures, and erasures-only decoding.

As it becomes clear from Tables 7 to 10 the Gaussian approximation is not as close
to the exact results as the IROA is, at least for the cases of m = 2 and m = 3 receivers
and n = 32. It appears that the accuracy of the approximation improves as the number
of simultaneous users k increases and in general it is better for larger values of the exact

probabilities.
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6. CONCLUSIONS

For FH/SSMA communications, we presented exact expressions for the multireception
probabilities P(l,m — l|k) for hop-synchronous and hop-asynchronous systems and various
types of RS decoding. The effects of AWGN were taken into consideration. However, these
expressions are very difficult to evaluate for m > 4, as they require computation of 2™ — 1
or 3™ — 1 sums.

We also established the validity of the IROA for the case ¢ >> k. Additionally, our
numerical analysis indicated that IROA is a good approximation for the multireception
probabilities, for m = 2 and m = 3. The accuracy of the approximation depends on the
specific values of q and k; it improves with decreasing k/g¢; for ¢ >> k, the corresponding
results are almost identical to the exact ones. Therefore, it appears that IROA gives useful
results, while requiring minimal numerical effort.

The kind of behavior observed so far is expected to be similar for higher values of m, as
well. However, this is only a conjecture at this time and additional work on the derivation
of computationally efficient techniques for the evaluation of P(I,m — I|k) is necessary to
prove this claim.

Note that, in many practical applications, the generated traffic is light. In such cases,
the condition ¢ >> k is easily satisfied and the IROA can be used to obtain the multirecep-
tion probabilities. However, there are also many practical situations, in which ¢ and k are
of comparable magnitude or even k > g and in which the IROA can not be validated. In
such situations, another method for evaluating the multireception probabilities is needed,
since the values of m that are of interest can be considerably larger than 3 (the practical
computational limit of the exact approach presented in this report).

In our report we also introduced an approximation based on central limit theorems
for multivariate distributions. This Gaussian approximation has low computational com-
plexity and promises to have good accuracy for large n (number of symbols per codeword
or packet). Unfortunately, as our extensive comparisons with the exact results indicated
in Section 9, for the nominal value n = 32 the Gaussian approximation does not vield uni-
formly satisfactory results. We conjecture that the accuracy of the approximation improves

as n increases but we can not prove this since the computational effort for evaluating the
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exact results is prohibitive for large n.

Finally, notice that the approach presented in this report for obtaining the exact results
is only applicable to FH/SS systems. Both the IROA and Gaussian approximations are
applicable to direct-sequence (DS) MA systems but an approach for the exact evaluation
of P(l,m — l|k) is needed in order to validate the accuracy of the two approximations in

the DS case
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APPENDIX A
A1l. Derivation of (2.3)
Here we derive the expression for P(l,n. ~Il|k) as a function of the probabilities P,.....
Let g, k denote the number of frequency slots and contending users in the slot, respectively.
For receiver 7, 1 <1 < m, let ¢; be a vector having 0 in the positions of correct symbol

reception and 1 in the positions of erroneous reception, that is.
g = (€ir,€i2,- -, €in).

For hard decision decoding, the ith receiver decodes correctly the received packet iff

n
OSZC,'J' St
=1

while it decodes erroneously iff

n
t+1< Ze,'j <n.
=1
Let us now turn our attention to the interreceiver operation. For the jth transmitted

symbols, for 1 < j < n, we define the vector event E; as
E; = (e1j,€2j, -, €mj).

As each e;; takes on two possible values, there is a total of 2™ possible E,, for each
7. As slotted operation is assumed throughout the paper, statistics are the same from
symbol to symbol, so that the description of the system is independent of the particular
symbol j. Thus we can drop the dependence from j in our notation and arbitrarily assign
events E to vectors of symbol events (e;,e2,---,em). However, for simplicity we choose
the correspondence

Enn =(61,€2,"‘,Cm)

so that (e;,e2,---,em) is equal to the binary representation of nn. If we d~fine by {,, the

number of times a particular event E,,, occurs as the index of symbols within a codeword
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j varies (1 < j < n), we obtain, due to the memoryless operation assumption, the result

given by (2.3).
A2. Solution to Recursion (2.6)

Here we prove that P,(0,m,q, k), given in (2.7), is the solution to the recursive equa-
tion described by (2.6). For compactness, we denote the binomial coefficients ( ; ) by

Cm.i-

First we observe that, for the binomial coefficients C,, ,, the following recursion is true
Cm+L|::CmJ—1+'CmJ- (A?l)

Then, by direct substitution of (2.7) to the right hand side of (2.6), we get

m-—1 13
1+ S (-1 Conra [[(1 - Palg =5+ 1k~ 5 +1)]
=1

=1

m-—1
~[1=Pa(@ k)] 41+ > (-1 Crny [T - Palg =5k -5} =
1=1

1=1

t

m-—1
= 1-m(l - Pu(q.k)] + Z(*—l)i(cmal,i +Cmo1,i-1) H[l —Pyg-7+1Lk—j7+1)]
=2

=1

+(=1)"Crntmet [J1 = Pu(g=j + 1.k~ j +1)]

=1

=1+ (-1)C [0 - Patg—j + 1k =5+ 1)) (42.2)

1=1 =1

From (A2.2) we see that (2.6) has as solution the expression given in (2.7).

36




Table 1

Error probabilities computed using exact and IROA models for
asynchronous FH/SSMA with RS (32,16) coding, k=10 and ¢=100.

(a) Probabilities P (2,01k) (exact) and P, (2.01k) (under IROA)

E, /N (dB) | errors decoding errors/erasures decoding | crasures decoding
6770 Exact | IROA Exact IROA Exact IROA
6 0.6320 | 0.6255 0.9900 0.9900 | 2.9998 | 0.9998
8 0.8490 | 0.8465 0.9999 0.9999 | 0.9999 | 0.9999
10 0.8633 | 0.8610 0.9999 09999 | 0.9999 | 0.9999
12 0.8634 | 0.8612 0.9999 0.9999 | 0.9999 | 0.9999
» 0.8635 | 0.8612 0.9999 0.9999 | 09997 | 3.9999
(b) Probabilities P(1,11k) (exact) and P;(1,11k) (under IROA)
E,/No (dB) errors decoding errorsferasures decoding | erasures decoding
b7Y0 Exact IROA Exact IROA Exact IROA
6 0.1588 0.1653 4176x10°5 | 49832107 | 5.777x107 | 5.778x107
8 710121072 | 7.354x 102 | 32492107 | 1.055x10°5 | 3.341x107 | 3.341x10°°
10 6.462x1072 | 6.687:107% | 2.510¢107 | 2.558x107° | 2.511x107° | 251x 107
12 6.54x 1072 | 6.678x1072 | 2.501x107° | 2.502x107 | 2.501x107° | 2.501x° 0®
oo 6.454x10°2 | 6.678x107% | 2.501x107 | 2.502x107° | 2.501x107° | 2.501x 1076
(c) Probabilities P (0,21k) (exact) and P;(0.21k) (under IROA)
E,INo (dB) errors decoding I' errors/erasures decoding erasures ecoding
6770 Exact IROA |  Exact IROA Exact IROA
6 5018210 " | 43712102 | 9.901x 1070 | 2.508xi07> | 1.284x107° | 3.339x 107
8 2915¢10° | 6.389x107 | 1.460x107° | 1.113x107° | 1.198x107 | 1.116x 107"
10 74382102 | 51932107 | 9.637x10 | 6.545x1072 | 7.660x107" | 6.305x107°
12 74212107 | 51795107 | 1458x107° | 6.258x1072 | 7.616x10"! | 6.258x107°
oo 742110 | 51792107 | 7.616x107" | 6.252x107"% | 7.616x107"" | 6.258x 1074
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Table 2

Error probabilities computed using exact and IROA models for

asynchronous FH/SSMA with RS (32,16) coding, k=10 and ¢=100.

(a) Probabilities P(3,01k) (exact) and P;(3,01k) (under IROA)

E,/N, (dB) errors decoding crrors/erasures decoding | erasures decoding
b0 Exact | IROA IROA Exact | IROA
6 0.5099 | 0.4947 0.9851 0.9998 | 0.9998
8 0.7857 | 0.7788 0.9999 0.9999 | 0.9999
10 0.8051 | 0.7990 0.9999 0.9999 | 0.9999
12 0.8054 | 0.7993 0.9999 0.9999 | 0.9999
oo 0.8054 | 0.7992 0.9999 0.9999 | 0.9999
(b) Probabilities P (2,11k) (exact) and P,;(2,11k) (under IROA)
E,/N, (dB) errors decoding errors/erasures decoding erasures decoding
b7T0 Exact IROA IROA Exact IROA
6 0.1121 0.1308 4.958x 1073 5.776x107> | 5.778x 10
8 6.334x107% | 6.766x 1072 1.055x 107 3.340x 10 | 3.341x107¢
10 5.816x1072 | 6.205x1072 2.558x107° 2511x107° | 2.511x10°¢
12 5.809x107% | 6.198x1072 2.501x10°® 2.501x107° | 2.501x107°
oo 5.809x1072 | 6.198x1072 2.501x107° 2.501x 107 | 2.501x107¢
(c) Probabilities P (1,21k) (exact) and P;(1,21k) (under IROA)
E,/N, (dB) errors decoding errors/erasures decoding erasures decoding
6770 Exact IROA IROA Exact IROA
6 3.678x 1072 | 3.457x107% 2.496x10™ 1.284x10°° | 3.339x107°
8 7.67x107% | 5.878x107° 1.113x 10710 1.198x1071° | 1.116x107"!
10 6.466x 107> | 4.819x10°3 6.545x 10712 7.660x107!! | 6.305x107!?
12 6.452x10~* | 4.806x1073 6.258x 10712 7.615x10°" | 6.258x 10712
oo 6.452x 10~ | 4.806x 1073 6.258x 10712 7.615x107"" | 6.258x1071?
(d) Probabilities P (0,31k) (exact) and P;(0,31k) (under IROA)
E,/N, (dB) errors decoding errors/erasures decodin erasures decoding
770 Exact IROA IROA Exact IROA
6 1.340x107% | 9.139x10™ 1.256x 107’ 6.117x1072 | 1.929x10°"
8 1.242x107 | 5.107x 107 1.175x 10713 7.264x107" | 3.728x107"
10 9.718x107™* | 3.742x107* 1.674x107" 1.169x 1072 | 1.583x107"
12 9.687x107™* | 3.727x107* 1.566x 107" 8.808x 1072 | 1.565x107"7
oo 9.687x10™* | 3.727x10™ 1.565¢ 107" 9.580x 107" | 1.565x107"
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Table 3

Error probabilities computed using exact and IROA models for
asynchronous FH/SSMA with RS (32,16) coding and error-correction decoding
(E,/Ng =10 dB)

(a) Probabilities P (2,01k) (exact) and P;(2,01k) (under IROA)

k=5 k =10 k =20 k =50
q Exact IROA Exact IROA Exact IROA Exact IROA
10 | 4.4x10°% | 9.6x107° | 1.6x10% | 1.3x107% 0.0 0.0 0.0 0.0
50 0.9200 09172 0.1065 0.0967 9.07x1077 | 7.06x1077 | 2.4x107% | 1.9x107%
100 | 0.9989 0.9989 0.8635 0.8612 7.36x1072 | 6.98x1072 | 2.6x107'° | 2.3x1071°
(b) Probabilities P (1,11k) (exact) and P,(1,11k) (under IROA)
k=S5 k=10 k =20 k =50
9 Exact IROA Exact IROA Exact IROA Exact IROA
10 | 98210~ | 9.8x10° | 4.1x10F | 37x10°0 0.0 0.0 0.0 0.0
50 | 3.77x107% | 4.05x1072 0.2045 02142 839x10~ | 8.39x107* | 4.9x107"% | 4.3x107%3
100 | 545x107* | 5.51x10™* | 6.45x10°% | 6.67x1072 0.1906 0.1944 1.5x10° | 1.5x107°
(c) Probabilities P (0,21k) (exact) and P;(0,21k) (under IROA)
k=5 k=10 k =20 k =50
9 Exact IROA Exact IROA Exact | IROA | Exact ] IROA
10 0.999 0.999 0.999 0.999 1.0 1.0 1.0 1.0
50 | 464103 | 1.79x1073 0.4846 0.4748 0.9983 | 09983 | 0.999 | 0.999
100 | 6.09x107% | 3.04x1077 | 7.42x107° | 5.18x107° | 0.5451 | 0.5413 | 0999 | 0.999
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Table 4

Error probabilities computed using exact and IROA models for

N

(E,/No = 10 dB)

s FH/SSMA wiiii RS (32,16) coding ana error-correction decoding

(a) Probabilities P (3,01k) (exact) and P;(3,01k) (under IROA)

k=5 k=10 k =20 k =50
9 Exact IROA Exact IROA Exact IROA Exact IROA
10 | 9.3x10°! | 94x10713 0.0 0.0 0.0 0.0 0.0 0.0
50 0.8863 0.8784 397x102 | 3.0x107% | 1.2x107° | 5.9x1071° 0.0 0.0
100 0.9983 0.9983 0.8054 07993 | 2.1x107% | 1.8x102 | 49x10715 | 34x107%°
(b) Probabilities P(2,11k) (exact) and P;(2,11k) (under IROA)
k=5 k=10 k =20 k =50
q Exact IROA Exact IROA Exact | IROA Exact IROA
10 | 435x107° | 9.62x10™° | 1.6x10°® | 1.3x107% 0.0 0.0 0.0 0.0
50 | 3.37x107% | 3.88x1072% | 6.7x1072 | 6.7x107% | 9.1x107 | 7.1x107 | 24x10°% | 1.8x107%
100 | 5.39x107* | 551x107 | 58x107% | 6.2x107% | 52x107% | 5.14x107% | 2.5x107%% | 2.2x 1071
(c) Probabilities P(1,21k) (exact) and P;(1,21k) (under IROA)
k=5 k =10 k =20 k =50
9 Exact IROA Exact IROA Exact IROA Exact IROA
10 | 98x10@° | 98x10° | 4.1x10°" | 3.7x1077 0.0 0.0 0.0 0.0
50 | 39x107 | 1.7x1073 0.1378 0.1476 | 8.4x107 | 84x10™* | 49x107%° | 4.3x107V
100 | 5.98x107° | 3.04x107 | 6.5x107 | 4.8x107 | 0.1386 0.1430 1.5x107° | 1.5x107
(d) Probabilities P (0,314 ) (exact) and P;(0,314) (under IROA)
k=5 k=10 k =20 k =50
9 Exact IROA Exact IROA Exact | IRCA | Exact | IROA
10 0.999 0.999 0.999 0.999 1.0 1.0 1.0 1.0
50 | 7.2x107¢ | 7.57x107° 0.3467 0.3271 0.9975 | 09975 | 0.999 | 0.999
100 | 1.14x107 | 1.68x107° | 9.69x10~ | 3.72x10™* | 0.4065 | 0.3982 | 0999 | 0.999
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Table §

Error probabilities computing using exact and IROA models for
asynchronous FH/SSMA with RS (32,16) coding and erasures-correction decoding

(a) Probabilities P (2,01k) (exact) and P;(2,01k) (under IROA)

k=10 k =20 50
q Exact IROA Exact | IROA Exact IROA
10 | 4.61x1072 594x10°8 | 6.01x1083 | 0.0 0.0 0.0
50 0.9999 0.9863 0.1565 | 0.1532 | 7.49x10713 | 7.49x107"3
100 | 0.9999 0.9999 0.9999 0.9797 | 09797 | 9.17x107® | 8.99x1073
(b) Probabilities P(1,11k) (exact) and P;(1,11k) (under IROA)
k =10 k =20 k =50
q Exact Exact IROA Exact IROA Exact IROA
10 0.1481 7.75x1077 | 7.75x1077 0.0 0.0 0.0 0.0
50 | 6.06x107 6.81x107 | 6.85x1073 0.2349 0.2382 8.65x107" | 8.65x1077
100 | 2.44x107!! 2.50x107° | 2.50x10°° | 1.01x107%2 | 1.01x107% | 8.56x107% | 8.58x1072
{c) Probabilities P (0,2 1k ) (exact) and P;(0,21k) (under IROA)
k =10 k =20 k =50
q Exact Exact IROA Exact IROA Exact IROA
10 0.6576 0.9999 0.9999 1.0 1.0 1.0 1.0
50 | 9.73x107"! | 3.67x107 | 8.81x10° | 4.75x107° 0.3734 0.3703 0.9999 | 0.9999
100 | 6.42x107"7 | 597x10°2 | 7.62x107" | 6.26x107'2 | 1.36x107* | 1.05x107 | 08195 | 0.8194
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Table 6

Error probabilities computed using exact and IROA models for
asynchronous FH/SSMA with RS (32,16) coding and erasures-correction decoding
(E,/No =10 dB)

(a) Probabilities P (3,01&) (exact) and P;(3,01k) (under IROA)

k=35 k =10 k =20 k =50
9 Exact IROA Exact IROA Exact IROA Exact IROA
10 | 1.31x107% | 7.32x107° | 4.47x10°° | 4.66x10°° | 09697 0.9696 0.0 0.0
50 0.9999 0.9999 0.9796 0.9795 6.39x107% | 5.99x1072 | 6.48x107" | 6.48x107"
100 | 0.9999 0.9999 0.9999 0.9999 0.9697 09697 | 9.06x107* | 8.52x107*
(b) Probabilities P (2,11k) (exact) and P;(2,11k) (under IROA)
k=5 k =10 k =20 k =50
q Exact IROA Exact IROA Exact IROA Exact IROA
10 | 3.29x107% | 3.04x107° | 594x10°° | 6.04x 1072 | 9.95x10~ | 1.00x1072 0.0 0.0
50 | 6.06x107 | 6.06x1077 | 6.72x107> | 6.80x107> | 926x1072 | 9.32x107% | 7.49x10°3 | 7.49x10713
100 | 2.44x10°1 | 2.44x107" | 2.50x107° | 2.50x107° | 9.95x107 | 1.00x107%2 | 8.27x107 | 8.52x107*
(c) Probabilities P (1,21k) (exact) and P;(1.2tk) (under IROA)
k=5 k =10 k =20 k =50
q Exact IROA Exact IROA Exact IROA Exact IROA
10 0.1152 0.1261 7.75x1077 | 7.75x1077 0.0 0.0 0.0 0.0
50 | 973x107 | 3.67x107 | 8.64x107° | 4.72x107° 0.1423 0.1449 8.65x1077 | 8.65x 1077
100 | 6.42x1077 | 597x10°%2 | 7.61x107" | 6.26x107"% | 1.34x10™* | 1.03x107* | 7.74x10°2 | 7.77x 1072
(d) Probabilities P (0,31k) (exact) and P;(0,31k) (under IROA)
k=3 k =10 k =20 k =50
q9 Exact IROA Exact ROA Exact ROA Exact | IROA
10 0.5424 0.5232 0.9999 0.9999 1.0 1.0 1.0 1.0
S0 | 1.37x107'% | 2.23x107° | 1.70x10™® | 3.28x107’ 0.2314 0.2254 0.9999 | 0.9999
100 | 2.78x107'2 | 1.46x10732 | 9.58x107"® | 1.56x107"7 | 2.22x107® | 1.07x10™° | 0.7422 | 0.7417




Table 7

Error probabilities computed using exact and Gaussian models for
asynchronous FH/SSMA with RS (32,16) coding, k=10 and ¢=100.

(a) Probabilities P (2,01k) (exact) and Pg(2,01k) (Gaussian)

E,IN, (dB) errors decoding errorsferasures decoding ! erasures decoding
57770 Exact | Gauss Exact Gauss | Exact | Gauss
6 0.6320 | 0.4916 0.9900 0.9865 | 09998 | 0.9963
8 0.7782 | 0.7782 0.9999 0.9885 | 0.9999 | 0.9894
10 0.8633 | 0.7979 0.9999 0.9885 | 0.9885 | 0.9885
12 0.7982 | 0.7982 0.9999 0.9885 | 0.9999 | 0.9885
o 0.8635 | 0.7982 0.9999 0.9885 | 0.9999 | 0.9885
(b) Probabilities P(1,11k) (exact) and Pg(1,11k) (Gaussian)
E,IN, (dB) errors decoding errors/erasures decoding erasures decoding
5770 Exact Gauss Exact Gauss Exact Gauss
6 0.1588 0.2237 4.176x107° | 6.728x1072 | 5.777x107° | 2.848x107
8 1.035x 107! | 1.034x10"' | 3.249x107° | 5.683x107> | 3.341x107° | 5.242x1073
10 6.462x1072 | 9.454x107% | 2.510x107° | 5.718x1073 | 2.511x10°¢ | 5.712x1073
12 9.443x 107 | 9.443x10°2 | 2.501x107° | 5.718x107> | 2.501x107° | 5.718x1073
oo 6.454x1072 | 9.443x10°2 | 2.501x107° } 5.718x107% | 2.501x10°% | 5.718x10
(c) Probabilities P (0,21k) (exact) and Pg (0,2 1k) (Gaussain)
E,IN, (dB) errors decoding errors/erasures deceding erasures decoding
6770 Exact Gauss Exact Gauss Exact Gauss
6 5.018x1072 | 5997x10% | 9.901x10> | 4.671x10™ | 1.284x10°° | 1.175x10°
8 1.484x107% | 1.484x107% | 1.460x107° | 4.707x107° | 1.198x107'° | 3.445x1073
10 7.438x1072 | 1.296x107% | 9.637x10°% | 4.932x1075 | 7.660x107"! | 4.912x1073
12 1.294x1072 | 1.294x107% | 1.458x107'° | 4.935x107° | 7.616x107"" | 4.934x1073
o0 7.421x1072 | 1.294x10°2 | 7.616x107'" | 4.935x10°5 | 7.616x10°"" | 4.934x107
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Table 8

Error probabilities computed using exact and Gaussian models for
asynchronous FH/SSMA with RS (32,16) coding, k=10 and ¢=100.

(a) Probabilities P(3,01k) (exact) and Pg(3,01k) (Gaussian)

errors decoding | errors/erasures decoding | erasures decodin
Ey/No (dB) Exact | Gauss Gauss Exact | Gauss
6 0.5099 | 0.3191 0.9798 0.9998 | 0.9944
8 0.7857 | 0.6876 0.9829 0.9999 | 0.9843
10 0.8051 | 0.7146 0.9828 0.9999 | 0.9828
12 0.8054 | 0.7149 0.9828 0.9999 | 0.9828
o0 0.8054 | 0.7149 0.9828 0.9999 | 0.9828
(b) Probabilities P (2,11k) (exact) and Pg(2,11k) (Gaussian)
E,/N, (dB) errors decoding errors/erasures decoding erasures decoding
6770 Exact Gauss Gauss Exact Gauss
6 0.1121 0.1714 6.682x 1073 5.776x107° | 2.844x1073
8 6.334x107% | 9.059x 1072 5.636x 1073 3.340x10°° | 3.208x 1073
10 5.816x107% | 8.333x1072 5.669x 1073 2.511x10°° | 5.663x1073
12 5.809x107% | 8.324x1072 5.669x 1073 2.501x107° | 5.669x1073
oo 5.809x1072 | 8.325x1072 5.669x 1073 2.501x107° | 5.669x1073
(c) Probabilities P(1,21k) (exact) and Ps(1,21k) (Gaussian)
E,INo (dB) errors decoding errors/erasures decoding erasures decoding
b7V 0 Exact Gauss Gauss Exact Gauss
6 3.678x107% | 5.163x107* 4.637x107 1.284x10° | 1.171x10°°
8 7.67x107> | 1.287x1072 4.654x107° 1.198x107'9 | 3.417x1073
10 6.466x107> | 1.121x1072 4.873x107° 7.660x 107" | 4.853x107°
12 6.452x107* | 1.119x1072 4.875x1073 7.615x 107" | 4.875x1073
oo 6.452x107 | 1.119x1072 4.874x 1073 7.615x107"! | 4.874x107°
(d) Probabilities P(0,31k) (exact) and Pg(0,31k) (Gaussian)
E,INo (dB) errors decoding errors/erasures decoding erasures decoding
6770 Exact Gauss Gauss Exact Gauss
6 1.340x1072 | 8.183x10™° 3.295x 1077 6.117x107"% | 1.353x10”
8 1.242x1072 | 1.973x107 5.319x 1077 7.264x 107" | 2.741x 1077
10 9.718x10™* | 1.751x107 5.951x 1077 1.169x107*? | 5.889x1077
12 9.687x10~* | 1.748x1073 5.959x 1077 8.808x107"3 | 5.957x1077
oo 9.687x107™* | 1.748x107 5.957x 1077 9.580x 107" | 5.957x107




Table 9

Error probabilities computed using exact and Gaussian models for
asynchronous FH/SSMA with RS (32,16) coding, E, /N =10dB and ¢=100.

errors decoding

errors/erasures decoding

(a) Probabilities P (2,01k) (exact) and Pg (2,01k) (Gaussian)

erasures decoding |

k Exact Gauss Exact Gauss Exact Gauss
5 0.9989 0.9042 0.9990 0.9044 0.9999 0.9045
10 | 0.8635 0.7979 0.9152 0.9885 0.9999 0.9885
20 | 7.36x1072 | 4.0151x10%2 | 0.8921 0.9722 0.9797 0.9722
50 | 2.6x10710 | 1.077x10°" | 7.25x107° | 3.891x1073 | 9.17x107% | 3.885x1073
(b) Probabilities P (1,11k) (exact) and P (1,11k) (Gaussian)
X errors decoding errors/erasures decoding erasures decoding
Exact Gauss Exact Gauss Exact Gauss
5 | 545x10™° | 4.5293x107% | 7.21x10° | 4.521x107% | 2.44x10"'" | 4.516x1072
10 | 645x1072 | 9.454x1072 | 8.27x10™* | 5.718x107> | 2.50x10°° | 5.712x1073
20 0.1906 0.1616 1.33x107! | 1.381x1072 | 1.01x107% | 1.379x1072
50 | 1.50x107° | 4.931x107° | 6.31x107% | 6.247x1072 | 8.56x107% | 6.249x1072
(c) Probabilities P(0,21k) (exact) and Pg (0,2 1k) (Gaussian)
k errors decoding errors/erasures decoding erasures decoding
Exact Gauss Exact Gauss Exact Gauss
5 | 6.09x10°° | 5.170x10 | 8.32x10™ | 5.176x10 | 6.42x10™' | 5.168x10™
10 | 7.42x107% | 1296x1072 | 3.75x107° | 4.932x10™° | 7.62x107!! | 4.912x107°
20 | 05451 0.6366 2.87x1072 | 1.879x10™* | 1.36x10™* | 1.867x107*
50 | 0.9999 0.9999 09123 0.8711 0.8195 0.8711
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Table 10

Error probabilities computed using exact and Gaussian models for
asynchronous FH/SSMA with RS (32,16) coding, E,/N =10dB and ¢=100.

(a) Probabilities P (3,01k) (exact) and Ps; (3,01k) (Gaussian)

X errors decoding errors/erasures decoding erasures decoding
Exact | Gauss Gauss Exact Gauss
5 0.9983 0.8632 0.8635 0.9999 0.8635
10 0.8054 0.7146 0.9828 0.9999 0.9828
20 | 2.10x102 | 7.880x1073 0.9585 0.9697 0.9686
50 | 4.00x10°" | 9.0393x10716 1.99x107* 9.06x107* | 1.983x107
(b) Probabilities P (2,1 1k) (exact) and Ps(2,11k) (Gaussian)
k errors decoding errors/erasures decoding erasures decoding
Exact Gauss Gauss Exact Gauss
5 | 549x10™ | 4.095x10°* 4.087x 1072 2.44x107'0 | 4.083x107°
10 | 5.80x10% | 8.333x1072 5.669x 1073 2.50x107° | 5.664x 1073
20 | 520x107% | 3.227x1072 1.363x 1072 9.95x107> | 1.361x1072
50 | 2.50x107'° | 1.078x107!! 3.691x 1073 827x107 | 3.687x107
(c) Probabilities P(1,21k) (exact) and Pg (1,21k) (Gaussian)
k errors decoding errors/erasures decoding erasures decoding
Exact Gauss Gauss Exact Gauss
5 | 598x10° | 4.336x10 4.340x107 6.42x10°7 | 4.333x107
10 | 6.50x1073 | 1.121x1072 4.873x 107 7.61x10°" | 4.853x10°°
20 0.1386 0.1234 1.855x10™* 1.34x107* | 1.843x107°
50 | 1.50x107° | 4.931x10°° 5.878x1072 7.74x107% | 5.88x1072
(d) Probabilities P(0,31k) (exact) and P;(0,31k) (Gaussian)
k errors decoding errors/erasures lecodin erasures decoding
— Exact Gauss Gauss Exact Gauss
5 | 1.14x10”" | 8.346x107* 8.361x 107 2.78x1071% | 8.345x107
10 | 9.69x10™* | 1.751x107° 5.951x1077 9.58x1071? | 5.889x107’
20 | 0.4065 0.5073 2.416x107° 2.22x107° | 2.384x107°
50 { 0.9990 09999 0.8124 0.7422 0.8123
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